

Association Analysis of Microbiome Presence-Absence Data using Logic Regression

Gen Li

Associate Professor Department of Biostatistics, University of Michigan

November 16, 2022

Joint work with Yiwen Chen

Prominence of Microbiome Research

ntroduction

Microbiome Data Statistical Challenge

Regressio Analysis

Logic Regression Bottom-Up Procedure ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

- Numerous associations with health conditions
- Promising therapeutic innovations
- Potential causal effects on disease
- A burgeoning field with lots of unknowns

Microbiome Data

ntroduction

Microbiome Data Statistical Challenges

Regression Analysis

Logic Regression Bottom-Up Procedure ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

- Read counts from amplicon or metagenomic sequencing data
 - Heterogeneous sequencing depths

Microbiome Data

ntroduction

Microbiome Data Statistical Challenges

Regression Analysis

Logic Regression Bottom-Up Procedure ORIGINS Analysis

Abundance Analysi Censoring Transformation Log-Rank Test

- Read counts from amplicon or metagenomic sequencing data
- Relative abundances after normalization
 - Compositionality; skewness; zero-inflation

Microbiome Data

ntroduction

Microbiome Data

Regression Analysis

Logic Regression Bottom-Up Procedure ORIGINS Analysis

Abundance Analysi
Censoring Transformation
Log-Rank Test

- Read counts from amplicon or metagenomic sequencing data
- Relative abundances after normalization
- Dichotomized presence/absence (P/A) states

Statistical Challenges

Microbiome Data Statistical Challenges

Bottom-Up Procedure

Log-Rank Test

- Compositional data analysis is tricky
 - Non-Euclidean
- Highly skewed
 - ⋆ Dominant vs. rare taxa.
- Excessive zeros
 - ★ Typically over 50%
- Tree structure
 - ⋆ Taxonomy or phylogeny
- Measurement errors
 - * Esp. at finer levels

2 Springer

Benefits of P/A Analysis

ntroduction Microbiome Data Statistical Challenges

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Differential
Abundance Analysis
Censoring Transformation
Log-Rank Test

- P/A states of taxa have intrinsic health implications
 - E.g., presence of *E. coli* causes UTI
- Binary data are much easier to analyze
- More robust against measurement errors
- Better suited for rare taxa analysis
- When conducted tactically*, P/A dichotomization may preserve almost all the abundance information

Fundamental Tasks in Microbiome Research

ntroduction
Microbiome Data
Statistical Challenges

Analysis
Logic Regression
Bottom-Up Procedure

ORIGINS Analysis

Differential

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

■ Regression/Association Analysis

■ Differential Abundance Analysis

Network Inference

Microbiome Data
Statistical Challenges

Regression Analysis Logic Regression Bottom-Up Procedure

ORIGINS Analysis

Differential

Abundance Analysis

Censoring Transformation Log-Rank Test

Summary

Regression Analysis

Novel Tree-Guided Logic Regression for P/A Data

State-of-the-Art

Introduction
Microbiome Data
Statistical Challenges

Analysis Logic Regression

Bottom-Up Procedure ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summar

Log-contrast models

$$Y = \beta_0 + \beta_1 \log(X_1/X_p) + \cdots + \beta_{p-1} \log(X_{p-1}/X_p) + \varepsilon$$

or

$$Y = \beta_0 + \sum_{j=1}^{p} \beta_j \log X_j + \varepsilon$$
, where $\sum_{j=1}^{p} \beta_j = 0$

- \blacksquare (X_1, \dots, X_p) is the vector of relative abundances
- Inadequate to handle zeros
- Lacking straightforward biological interpretations
- Subject to measurement errors

P/A Dichotomized Predictors

Microbiome Data
Statistical Challenges

Analysis Logic Regression

Bottom-Up Procedur ORIGINS Analysis

Abundance Analy Censoring Transformal

Censoring Transformation
Log-Rank Test

$$Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \sum_{k=1}^q \theta_k L_k + \varepsilon,$$

- $X_i \in \{0, 1\}$ is the P/A status of Taxon j
- L_k is a logic expression (Boolean operation of X_1, \ldots, X_p)
 - Regular interaction (e.g., $L_k = X_i X_{i'}$)
 - √ Pros: existing methods available (e.g., quadratic regression)
 - × Cons: undesirable interpretation; heredity constraint
 - Arbitrary logic expression (e.g., $L_k = X_1 \vee X_2 \vee X_3 \wedge X_4^c$)
 - √ Pros: flexible; logic regression (Ruczinski et al., 2003, JCGS)
 - × Cons: obscure biological meaning; slow to fit

Tree-Guided Logic Expression

Introduction
Microbiome Data
Statistical Challenges

Regression Analysis

Logic Regression Bottom-Up Procedure ORIGINS Analysis

Differential Abundance Ana

Censoring Transformation Log-Rank Test

- Phylogenetic tree or taxonomic tree
- Leaf nodes: $X_1, ..., X_p$
- Internal nodes: L_1, \ldots, L_q
- Only use *OR* to combine descendant leaf nodes; for example,
 - $\blacksquare L_9 = X_1 \vee X_2$
 - $L_{12} = X_5 \vee X_6 \vee X_7 \vee X_8$

Model Fitting

Microbiome Data

Analysis

Logic Regression Bottom-Up Procedure

ORIGINS Analysis

Abundance Analysis
Censoring Transformation

Log-Rank Test Summary

$$\min \ \| \textbf{\textit{Y}} - \textbf{\textit{X}}\boldsymbol{\beta} - \textbf{\textit{L}}\boldsymbol{\theta} \|^2 + \mathcal{P}_{\lambda} \bigg((\boldsymbol{\beta}^T, \boldsymbol{\theta}^T)^T \bigg)$$

- $\mathcal{P}_{\lambda}(\cdot)$ is a sparsity-inducing penalty (e.g., LASSO)
 - ✓ Pros: ready to implement
 - × Cons: collinearity; overlapping features
 - ★ Proposal: a bottom-up combination/selection procedure

Introduction
Microbiome Data
Statistical Challeng

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Differential Abundance Analysis Censoring Transformation

Log-Rank Test

A greedy heuristic algorithm

- First, **combine** eligible nodes that lead to the steepest decrease in BIC (tradeoff btw *goodness-of-fit* and *parsimony*)
- Once BIC stops decreasing, further select features

Microbiome Data

Bottom-Up Procedure ORIGINS Analysis

Censoring Transformation

Log-Rank Test

- A greedy heuristic algorithm
- First, **combine** eligible nodes that lead to the steepest decrease in BIC (tradeoff btw goodness-of-fit and parsimony)
- Once BIC stops decreasing, further select features

Introduction
Microbiome Data
Statistical Challeng

Analysis
Logic Regression
Bottom-Up Procedure

Differential Abundance Analysis Censoring Transformation Log-Rank Test

Commence of

- A greedy heuristic algorithm
- First, **combine** eligible nodes that lead to the steepest decrease in BIC (tradeoff btw *goodness-of-fit* and *parsimony*)
- Once BIC stops decreasing, further **select** features

Introduction
Microbiome Data
Statistical Challence

Analysis

Logic Regression

Bottom-Up Procedure

Differential Abundance Analysis Censoring Transformation Log-Rank Test

Cummons

- A greedy heuristic algorithm
- First, **combine** eligible nodes that lead to the steepest decrease in BIC (tradeoff btw *goodness-of-fit* and *parsimony*)
- Once BIC stops decreasing, further select features

Introduction
Microbiome Data
Statistical Challenge

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Differential Abundance Analysis Censoring Transformation

Log-Rank Test

A greedy heuristic algorithm

- First, **combine** eligible nodes that lead to the steepest decrease in BIC (tradeoff btw *goodness-of-fit* and *parsimony*)
- Once BIC stops decreasing, further select features

Properties

ntroduction Microbiome Data Statistical Challenges

Analysis
Logic Regression

Bottom-Up Procedure ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summar

Compared to naive variable selection methods (either for leaf nodes only or for all nodes), the BU method

- Accommodates the tree structure
- Better alleviates the collinearity
- Selects fewer variables
- Has better interpretability

Simulation

Introduction

Microbiome Data Statistical Challenges

Regression Analysis

Logic Regression Bottom-Up Procedure

ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

(c) MCC

ORIGINS Data Analysis

Introduction
Microbiome Data
Statistical Challenges

Analysis Logic Regression

Bottom-Up Procedure ORIGINS Analysis

Difforential

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

Oral Infections, Glucose Intolerance and Insulin Resistance Study (ORIGINS)

- Goal: associate oral microbiota with periodontal health
- 757 diabetes-free individuals (WAVE II)
- 16S rRNA sequencing on subgingival plaque samples
- 530 taxa at the OTU level with known taxonomic structure
- Periodontal status (percent bleeding on probing) as outcome
- Sex, age, BMI as covariates

Evaluation Metric

ntroduction Microbiome Data Statistical Challenges

Analysis Logic Regression

Bottom-Up Procedure ORIGINS Analysis

ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

- Randomly selected 500 samples for training and 257 for testing
- Repeated 50 times
- Compared BU (proposed), LASSO (leaf nodes only), Tree-LASSO (all nodes)
- Each time, evaluated the following
 - In-sample MSE (goodness of fit)
 - Out-sample MSE (prediction performance)
 - Selected features (interpretability)

Results: MSE

Introduction

Microbiome Data Statistical Challenges

Regressior Analysis

Logic Regression Bottom-Up Procedure

ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

Model Fitting Comparison

Prediction Comparison

Results: Feature Selection

ntroduction

Microbiome Data Statistical Challenges

Regression Analysis

Logic Regression Bottom-Up Procedure

ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

Results: Feature Selection

ntroduction
Microbiome Data

Microbiome Data Statistical Challenges

Regressior Analysis

Logic Regression Bottom-Up Procedure

ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summar

■ BU selection is much more sparse and stable

Results: Feature Selection

ntroduction
Microbiome Data
Statistical Challenges

Regression
Analysis
Logic Regression

Bottom-Up Procedure
ORIGINS Analysis

ORIGINS Analysi

Abundance Analysis
Censoring Transformation
Log-Rank Test

- Top selected taxa (>40%) at different taxonomic levels by BU
- Their P/A is associated with periodontal status
- The evidence in literature corroborates with our findings

Introduction

Microbiome Data

Statistical Challenges

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Differential Abundance Analysis

Censoring Transformation Log-Rank Test

Summary

Differential Abundance Analysis

Novel Transformation and Censored Data Analysis

Overview

ntroduction Microbiome Data Statistical Challenges

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Differential
Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

Goal: identify differentially abundant taxa in different groups

- Parametric tests rely on zero-replacement transformations
- Nonparametric tests are not good at handling ties
- Inadequate covariate adjustment

Is there a better way to handle "0"?

Where is "0" from

Microbiome Data Statistical Challenges

Logic Regression Bottom-Up Procedure ORIGINS Analysis

Censoring Transformation Log-Rank Test

- Structural zeros
 - "True" zeros
 - Absence of a taxon in a sample
- Sampling zeros
 - "Pseudo" zeros
 - Fail to detect the existence due to low abundance or insufficient sequencing depth

Where is "0" from

Introduction
Microbiome Data
Statistical Challenges

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

- Structural zeros
 - "True" zeros
 - Absence of a taxon in a sample
- Sampling zeros
 - "Pseudo" zeros
 - Fail to detect the existence due to low abundance or insufficient sequencing depth
- Both are due to actual abundance below detection limit

Where is "0" from

ntroduction
Microbiome Data
Statistical Challenges

Analysis Logic Regression

Bottom-Up Procedure ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

- Structural zeros
 - "True" zeros
 - Absence of a taxon in a sample
- Sampling zeros
 - "Pseudo" zeros
 - Fail to detect the existence due to low abundance or insufficient sequencing depth
- Both are due to actual abundance below detection limit

That's **censoring**!

Treat "0" as Censored

Introduction
Microbiome Data
Statistical Challenges

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Differential
Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

Assume detection limit is 1

Samples		ΟΤU			Library Size			
x_1	19	1	78	0	0	m ₁ =98		
\boldsymbol{x}_2	5	0	41	2	0	m ₂ =48		
x_1^*	19	1	78	1.	1.	m ₁ *=100		
\boldsymbol{x}_2^*	5	1	41	2	1	m ₂ *= 50		
$C(\boldsymbol{x}_1^*)$	0.19	0.01	0.78	0.01	0.01			
$C(\boldsymbol{x}_2^*)$	0.10	0.02	0.82	0.04	0.02			
\boldsymbol{z}_1	-log(0.19)	-log(0.01)	-log(0.78)	{-log(0.01)}+	${-log(0.01)}^{+}$			
\boldsymbol{z}_2	-log(0.10)	{-log(0.02)}+	-log(0.82)	-log(0.04)	{-log(0.02)}+			

Interpretation

Introduction
Microbiome Data
Statistical Challenges

Analysis Logic Regression

Bottom-Up Procedure ORIGINS Analysis

Abundance Analysis
Censoring Transformation
Log-Rank Test

	Microbiome Data	Survival Data	
Type	Right-censored	Right-censored	
Range	[0, ∞)	$[0,\infty)$	
Time	Abundance cutoff (high to low)	Time duration (short to long)	
Event	Presence	Death	
Censoring	Zero count	Dropout	
At-risk	Abundance at or below (P/A!)	Survival time at or above	

Visualization (for one taxon)

Introduction
Microbiome Data
Statistical Challenges

Analysis
Logic Regression

Bottom-Up Procedure ORIGINS Analysis

Abundance Analysis
Censoring Transformation

Log-Rank Test

Differential Abundance Analysis

ntroduction Microbiome Data Statistical Challenges

Analysis
Logic Regression
Bottom-Up Procedure
ORIGINS Analysis

Differential Abundance Analysis

Censoring Transformation Log-Rank Test

Summar

For each taxon, test for equality of distribution

$$(z_1^{(1)}, \cdots, z_{n_1}^{(1)})$$
 vs. $(z_1^{(2)}, \cdots, z_{n_2}^{(2)})$

- Classic two-sample test in survival analysis
 - Without covariate: log-rank test
 - With covariates: Cox model
- No distributional assumption on z

Log-Rank Test (for one taxon)

Introduction
Microbiome Data
Statistical Challenges

Analysis
Logic Regression

Bottom-Up Procedure
ORIGINS Analysis

Abundance Analysis
Censoring Transformation

Log-Rank Test

Additional Remarks

Introduction
Microbiome Data
Statistical Challenge

Analysis Logic Regression

Bottom-Up Procedure ORIGINS Analysis

Censoring Transformati Log-Rank Test

- Better zero handling (by aggregating P/A information across different cutoffs)
- More powerful in detecting differences at lower abundance levels (suitable for rare taxa comparison)
- Highly flexible (different variants available; Log-rank test is equivalent to the score test in Cox)

Introduction

Microbiome Data Statistical Challenges

Regression Analysis

Logic Regression Bottom-Up Procedure ORIGINS Analysis

Differential

Censoring Transformation Log-Rank Test

Summary

Summary

Introduction
Microbiome Data
Statistical Challenge

Analysis Logic Regression Bottom-Up Procedure

ORIGINS Analysis

Differential
Abundance Analysi

Censoring Transformation Log-Rank Test

Summary

P/A-based methods have untapped potential for microbiome studies

- Easier to analyze
- Less sensitive to measurement error
- Better suited for rare taxa.
- New method developments
 - Interpretable regression analysis
 - Differential abundance analysis
 - Co-occurrence network inference

ntroduction
Microbiome Data
Statistical Challenges

Analysis Logic Regression Bottom-Up Procedure ORIGINS Analysis

Differential
Abundance Analysis
Censoring Transformation
Log-Rank Test

Summary

Thank you!

Also working on methods for longitudinal microbiome data.

Interested to know more?

Contact: ligen@umich.edu

*Support: R01HG010731; R03DE027773; R03DE031296