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Microbiome Data

Microbiome Data
tatistical Challenges

(a)

Sequencing Reads (b)  Relative Abundances (c) Presence-Absence Data
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m Read counts from amplicon or metagenomic sequencing data
m Heterogeneous sequencing depths
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Microbiome Data

(a)

Sequencing Reads (b)  Relative Abundances (c) Presence-Absence Data
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m Read counts from amplicon or metagenomic sequencing data

m Relative abundances after normalization
m Compositionality; skewness; zero-inflation
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Microbiome Data

Microbiome Data
tatistical Challenges

(a)

Sequencing Reads (b)  Relative Abundances (c) Presence-Absence Data
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m Read counts from amplicon or metagenomic sequencing data
m Relative abundances after normalization
m Dichotomized presence/absence (P/A) states
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Microbiome Dat

Statistical Challenges

Censoring Transformatior
og-Rank Tes
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Benefits of P/A Analysis

Statistical Challenges

m P/A states of taxa have intrinsic health implications
m E.g., presence of E. coli causes UTI

m Binary data are much easier to analyze
m More robust against measurement errors
m Better suited for rare taxa analysis

m When conducted tactically*, P/A dichotomization may
preserve almost all the abundance information
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Fundamental Tasks in Microbiome Research

m Regression/Association Analysis

Statistical Challenges
Y ~ Microbiome

m Differential Abundance Analysis

m Network Inference
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Regression Analysis

Novel Tree-Guided Logic Regression for P/A Data
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State-of-the-Art

Log-contrast models

Y = Bo + B1log(X1/Xp) 4 - - - 4 Bp—1log(Xp—1/Xp) + €

or
P P
Y=750+> BilogXi+¢e, where Y 8 =0
j=1 j=1
m (Xi,...,Xp) is the vector of relative abundances

m Inadequate to handle zeros
m Lacking straightforward biological interpretations

m Subject to measurement errors
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P/A Dichotomized Predictors

p q
Y=00+> BiXi+ Y bklx+e,

j=1 k=1

Logic Regression

m X; € {0,1} is the P/A status of Taxon j
m L is a logic expression (Boolean operation of Xi, ..., Xp)
m Regular interaction (e.g., Ly = X;X/)
v Pros: existing methods available (e.g., quadratic regression)
x Cons: undesirable interpretation; heredity constraint

m Arbitrary logic expression (e.g., Ly = Xi V Xa V Xz A X})
v Pros: flexible; logic regression (Ruczinski et al., 2003, JCGS)

x Cons: obscure biological meaning; slow to fit
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Tree-Guided Logic Expression

m Phylogenetic tree or taxonomic tree
m Leaf nodes: Xi,..., X,
m Internal nodes: Ly,..., L,

m Only use OR to combine descendant leaf nodes; for example,
mlg=XiVXs

B Lo=XsVXe VX7V Xg
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Model Fitting

min |Y — X8 — L8| + Py, ((,@T, eT)T)
m P,(-) is a sparsity-inducing penalty (e.g., LASSO)
v Pros: ready to implement

x Cons: collinearity; overlapping features

% Proposal: a bottom-up combination/selection procedure
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Bottom-Up Procedure

m A greedy heuristic algorithm

m First, combine eligible nodes that lead to the steepest
decrease in BIC (tradeoff btw goodness-of-fit and parsimony)

m Once BIC stops decreasing, further select features
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Bottom-Up Procedure

m A greedy heuristic algorithm

m First, combine eligible nodes that lead to the steepest
decrease in BIC (tradeoff btw goodness-of-fit and parsimony)

m Once BIC stops decreasing, further select features
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Bottom-Up Procedure

m A greedy heuristic algorithm

m First, combine eligible nodes that lead to the steepest
decrease in BIC (tradeoff btw goodness-of-fit and parsimony)
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Bottom-Up Procedure

m A greedy heuristic algorithm

m First, combine eligible nodes that lead to the steepest
decrease in BIC (tradeoff btw goodness-of-fit and parsimony)

Bottom-Up Procedure
ORIGINS Analysis

m Once BIC stops decreasing, further select features
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Bottom-Up Procedure

Microiome Dat m A greedy heuristic algorithm

m First, combine eligible nodes that lead to the steepest
decrease in BIC (tradeoff btw goodness-of-fit and parsimony)

Bottom-Up Procedure
ORIGIN: nalysis

m Once BIC stops decreasing, further select features
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Properties

Compared to naive variable selection methods (either for leaf
nodes only or for all nodes), the BU method

Bottom-Up Procedure

m Accommodates the tree structure
m Better alleviates the collinearity
m Selects fewer variables

m Has better interpretability
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Simulation
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ORIGINS Data Analysis

Oral Infections, Glucose Intolerance and Insulin Resistance
Study (ORIGINS)

ORIGINS Analysis m Goal: associate oral microbiota with periodontal health

757 diabetes-free individuals (WAVE 1)

16S rRNA sequencing on subgingival plaque samples

530 taxa at the OTU level with known taxonomic structure

Periodontal status (percent bleeding on probing) as outcome

Sex, age, BMI as covariates
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Evaluation Metric

m Randomly selected 500 samples for training and 257 for
testing

ORIGINS Analysis ™ Repeated 50 times

m Compared BU (proposed), LASSO (leaf nodes only),
Tree-LASSO (all nodes)

m Each time, evaluated the following
m In-sample MSE (goodness of fit)

m Out-sample MSE (prediction performance)

m Selected features (interpretability)
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Results: MSE

Model Fitting Comparison
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Results: Feature Selection
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Results: Feature Selection
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m BU selection is much more sparse and stable
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Results: Feature Selection

Top Selected Taxa by BU

m Top selected taxa (>40%) at different taxonomic levels by BU
m Their P/A is associated with periodontal status

m The evidence in literature corroborates with our findings
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Differential Abundance Analysis

Novel Transformation and Censored Data Analysis
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Overview

Goal: identify differentially abundant taxa in different groups

m Parametric tests rely on zero-replacement transformations

Censoring Transformation

m Nonparametric tests are not good at handling ties

m Inadequate covariate adjustment

Is there a better way to handle “0”?
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Where is “0” from

Microbiome Dat

m Structural zeros
P m “True” zeros

m Absence of a taxon in a sample

m Sampling zeros
m “Pseudo” zeros

Censoring Transformation
og-Rank Tesf

m Fail to detect the existence due to low abundance or insufficient
sequencing depth
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m “True” zeros

m Absence of a taxon in a sample

m Sampling zeros
m “Pseudo” zeros

Censoring Transformation
m Fail to detect the existence due to low abundance or insufficient
sequencing depth

m Both are due to actual abundance below detection limit
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Where is “0” from

m Structural zeros
m “True” zeros

m Absence of a taxon in a sample

m Sampling zeros
m “Pseudo” zeros

Censoring Transformation

m Fail to detect the existence due to low abundance or insufficient
sequencing depth

m Both are due to actual abundance below detection limit

That's censoring!
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Treat “0” as Censored

Assume detection limit is 1

Samples OoTU
X1 19 1 78
X2 5 0 41
Censoring Transformation " -
X1 19 1 78 1
x5 5 1 41 2
c(xy) 0.19 0.01 0.78 0.01-
C(xy) 010 0.02 0.82 0.04
z;  -log(0.19) -log(0.01) -log(0.78) {-log(0.01)}*
z, -log(0.10) {-log(0.02)}* -log(0.82) -log(0.04)

BIOSTATISTICS

Library Size
m,=98
m,=48

1- m;=100
1- m3;=50
0.01
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Interpretation

Microbiome Data

Survival Data

Type
Range

Censoring Transformation Time

Event
Censoring

At-risk
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Abundance cutoff
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(P/A)
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[0, 00)

Time duration
(short to long)

Death
Dropout

Survival time at or above
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Visualization (for one taxon)
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Differential Abundance Analysis

For each taxon, test for equality of distribution

20,20y vs. (2P, 2B

Log-Rank Test

m Classic two-sample test in survival analysis
m Without covariate: log-rank test

m With covariates: Cox model

m No distributional assumption on z
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Log-Rank Test (for one taxon)
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Additional Remarks

m Better zero handling (by
aggregating P/A
information across different
cutoffs)

m More powerful in detecting
differences at lower
abundance levels (suitable
for rare taxa comparison)

Log-Rank Test

m Highly flexible (different
variants available; Log-rank
test is equivalent to the
score test in Cox)
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Microbiome Dat
Statistical C

Summary
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Summary

P/A-based methods have untapped potential for
microbiome studies

m Easier to analyze
m Less sensitive to measurement error
m Better suited for rare taxa

m New method developments
m Interpretable regression analysis

m Differential abundance analysis

m Co-occurrence network inference
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Thank you!

Also working on methods for longitudinal microbiome data.
Interested to know more?

Contact: 1igen@umich.edu

BlostATISTICS *Support: R0O1THG010731; RO3DE027773; RO3DE031296
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